
JOURNAL OF COMPUTATIONAL PHYSICS 78, 194214 (1988) 

A Computational Method of 
Solving Free-Boundary Problems in Vortex Dynamics* 

ALEXANDER EYDELAND AND BRUCE TURKINGTON 

Department of ktathematies and Statistics 
University of Massachusetts, Amherst, Massachusetts 01003 

Received February 13, 1987; revised October 19, 1987 

A general method for computing two-dimensional and axisymmetric three-dimensional 
solutions of the steady Euler equations is developed. The method is based upon variational 
principles which are formulated entirely in terms of the natural conserved quantities for the 
unsteady Euler equations. The vorticity fields considered have a free-boundary and may be 
defined either in a domain with boundary or in free space; moreover, the common restriction 
to the case of constant vorticity regions is not imposed. The global convergence of the 
resulting iterative solver is established. The numerical implementation of the method is 
discussed and several computational examples are given. 0 1988 Academic Press, Inc. 

INTRODUCTION 

In this article we present a general numerical method for computing steady vor- 
tex flows in an ideal fluid (that is, an incompressible, inviscid fluid governed by the 
Euler equations). We consider only flows that are either two-dimensional or three- 
dimensional and axisymmetric (possibly with swirl). In this context, we use the 
term “steady vortex flow” to mean a steady flow induced by one or several vortices, 
each being a region of one-signed vorticity, embedded in an irrotational ambient 
flow. The determination of such a flow evidently involves the solution of a non- 
linear, free-boundary problem: the boundary of the vortex region is required to be a 
streamline across which the tangential components of velocity are continuous, and 
the vorticity-streamfunction dependence is specified within the vortex region. The 
standard literature discusses various specific flows of this type (see, for instance, 
[3, 15]), including such classical examples as steadily translating vortex pairs and 
rings, Fiippl vortex wakes, and Von Karman vortex streets. Usually, numerical as 
well as analytical treatments of these flows rely upon certain simplifying 
assumptions, such as special symmetries among the vortices, particular flow 
geometries, or restrictive vorticity distributions (commonly “vortex patches”). Our 
aim in the present work, therefore, is to address the problem of computing steady 
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vortex flows in a general setting, and to present the formulation, analysis, an 
implementation of our computational method in a coherent and unified fashion. 

The method that we devise is a globally convergent iterative procedure, the 
particular form of which is dictated by the variational structure of the problem 
it is designed to solve. Indeed, our approach rests fundamentally on a general 
variational principle due to Arnol’d [ 1,2] which characterizes steady flows in an 
ideal fluid as constrained extremals for the kinetic energy functional defined on an 
appropriate class of competing vorticities. From a computational point of view the 
utility of this variational approach is threefold. First, it leads to a formulation of the 
general mathematical problem entirely in terms of the natural physical invariants 
associated with the equations governing vortex dynamics-namely, energy, im 
(or momentum), enstrophy, and helicity. Second, it allows a rigorous analysis of 
the convergence properties of the iterative procedure, which is based essentially on 
the underlying variational structure. Third, it results in numerical algorithms that 
are widely applicable and yet quite easily implemented.. Our method seems to be 
especially well suited to the computation of flows in general geometries and with 
general vorticity-streamfunction dependences. In this regard we note that our 
variational formulation differs slightly from that given by Arnol’d El, 21, whose 
principle is based upon the so-called isovortical variations, as we prefer to prescribe 
the functional relation between vorticity and streamfunction instead. 

The variational theory of steady vortex flows which constitutes the analytical 
counterpart of our work has been developed in a series of papers by the second 
author [ 14, 19, 20,221 for both two-dimensional and three-dimensional axisym- 
metric flows. The conceptual basis of this theory has been furnished by Benjamin 
[4, $1, whose work is especially noteworthy because it connects the abstract 
variational principles with concrete model problems in ideal fluid dynamics. I 
[12-J we have investigated another problem suggested in [S] concerning sol 
planetary (or Rossby) waves in a zonal current on the beta-plane using a me 
very similar to that used in the present paper. 

An alternate variational approach based directly on the semi-linear elli ‘ 
equation satisfied by the streamfunction has been employed by Fraenkel 
Berger [13}, Norbury [16], and others to establish existence theorems for vortex 
pairs and rings. Berestycki, Fernandez-Cara, and Glowinski [7] have examined the 
corresponding numerical results in considerable detail, utilizing an iterative 
procedure appropriate to this formulation. The variational principle undelyi 
of these results can be viewed as dual (in the sense of convex analysis) to ou 
ciple. Of course, there are also many other computational studies of steady flows in 
vortex dynamics which do not involve variational methods, and these results are 
referenced throughout the sequel when specific examples are discussed. 

We restrict our attention in this paper to flows which either contain only a single 
vortex region or may be reduced to such by symmetry. Our methods, however, 
apply just as well to flows containing several vortices. In a subsequent paper we 
intend to extend the results given herein to systems of vortices in ~sy~~~t~~ 
configurations. 

581/78/i-13 
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The article is organized as follows. In Section 1, we explain the formulation of the 
constrained .maximization problems (with one or two linear constraints) in a 
general context, and we review some specific examples that supply relevant model 
problems. In Section 2, we lirst define the iterative procedure appropriate to each 
variational problem, and we then analyze the convergence properties of these 
iterative procedures. In Section 3, we discuss the implementation of the numerical 
method, and we exhibit the results of computations for vortex pairs and Fijppl 
vortex wakes, as illustrative examples of the application of the general method. 

1. VARIATIONAL PRINCIPLES FOR STEADY FLOWS 

In this section we formulate the variational problems that form the basis of our 
subsequent analysis. In 1A we recall the equations governing vortex dynamics in 
two dimensions, and we pose the steady flow problems in a general setting. We then 
present in 1B several specific flow problems of physical interest which motivate our 
general analysis and which serve as examples in our implemented computations. 
We give some further extensions to axisymmetric flows (with or without swirl) in 
three dimensions in IC. 

1A. Constrained Maximization Problems 

Let D s lR* be a bounded, simply-connected domain with piecewise smooth 
boundary, JD, in the (x, y)-plane; let v denote the unit outward normal on aD. We 
shall formulate the Euler equations for an ideal fluid flow in D in the vorticity/ 
streamfunction form, writing m = o(x, y, t) and rj = 1+9(x, y, t) for the vorticity and 
streamfunction, respectively. Let G denote the Green operator which 
$ = Go as the solution of the problem: 

-A$=oinD, $=OondD. 

The governing equation of vortex dynamics is expressible as (see [3, $23 1 

cc) +ahG~+tQ=O f a(4 U) 
in D x (0, T), 

defines 

(1.1) 

1 

(1.2) 

where I,& = $(x, v) is the streamfunction for an ambient (steady) irrotational, flow in 
D upon which the vortex flow defined by o is imposed; thus, A$ = 0 in D and $ 
is specified on i3D, which amounts to specifying the flux at each point on the 
boundary. 

We formulate the variational principles for steady vortex flows by following the 
dynamically natural approach of Arnol’d [ 1, 21, which consists in extremizing the 
kinetic energy over all isovortical variations of a given (extremal) flow. In the 
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resent context, this general approach is as follows. Let the kinetic energy 
functional be expressed as 

E(cr,)=j[ [+oGo+~)o] dxdy. (1.3) 
D 

For a given vorticity o = w(x, y) we consider the variations & =61(x, y; z) defined 
by solving the equation (in a neighborhood of z = 0); 

& + 36 $1 ----=OinDx(-6,6), 
i a(-? Y) 

G”l,=-J=O, 

given an arbitrary test function 4 in D (4 is smooth in D and vanishes on 8D). 
find, after some calculation, that 

Thus, the condition that o be an extremal for E over all such variations is precisely 
the weak form of the dynamical equation (1.2) for steady solutions-namely, 

O=L o 
a(& Gw + $1 dx dy 

qx, y) for all test functions 4. 

Of course, (1.4) simply expresses the requirement that the vorticity w be constant 
along all of the streamlines associated with the streamfunction Gw -t- $. 
therefore seek steady solutions for which this required vorti~ity-streamfun~tio~ 
dependence is specified explicitly in the form 

o = &fJGo + $,, (1.5) 

where A is a vorticity strength parameter and f,(s) is a vorticity profile function. It 
is readily checked that (1.5) implies (1.4) for any (positive) constant 1” an 
(suitably smooth) real function f(s). 

Some restrictions on the above form are necessary in order to treat steady vortex 
flows with free-boundaries-that is, solutions w = LU(X, y) for which o > 0 in a sub- 
domain D c D and o = 0 in D\S;Z-and these are the flows that hold our atte~~~o~ 
here. For this purpose we require that the specified function j(s) is (1.5) satisfies the 
structure conditions: 

f~C’CO> +a), f(O) =L(O) = 0, f3,(s) > 0 for s > 0 

ti.J.(s) gM.F’ 
(1.5) 

forsome 1<r<Wo,0<vr<A4<~. 
r Y 
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Let f*(g) be the conjugate function to f(s) defined by the familiar formula 

f*(a) = SUP CJfl -fb)l; (1.7) 

then f*(a) = sf,(s) -f(s) and fS,(s) = [f,&(a)]-’ with B =fS(s) or, equivalently, 
~=f~*(cr), as is easily verified. The special case of a power function f(s) =sr/r 
clearly furnishes the prototype upon which the general class defined in (1.6) is 
fashioned; in this case, f*(o) = ar’/r’ with l/r -t l/r’ = 1. (With this prototypical case 
in mind, we shall emphasize the role of the exponent r in our nomenclature for the 
variational problems and iterative procedures introduced in the sequel, such as 
“Problem P; ,” “Procedure 17; ,” etc.) We now construct a variational problem 
whose solutions o = wA satisfy (1.5) and are parametrized by 2 for a fixed f(s). For 
1> 0, let the objective functional Q1(o), representing energy modified by a certain 
generalized enstrophy integral, and the constraint functional, C(o), representing 
circulation, be defined by 

~j.(O) = E(U) - ss ~~*(~/n) dx dy (1.8) 
D 

C(o) = j-j” u dx dy. 
D 

(1.9) 

We consider the constrained maximization problem (characterizing steady vortex 
flows with free-boundaries). 

PROBLEM P;. Maximize oj,(o) subject to w 2 0 in D, C(o) = 1. 

The normalization of the circulation constraint to unity is accomplished by 
resealing both o and 1. That a maximizer o = oj, for the problem P; yields a steady 
flow satisfying (1.5) (and hence (1.4)) follows in the standard manner. Indeed, the 
variational conditions for P; are 

Gw+$-p=f,*(o/A) on {o>O) 

Gw+$-~60 on (w=O), 
(1.10) 

where ,U is the Lagrange multiplier for the constraint C(o) = 1. It then follows, 
using the properties of the conjugate function, f*, that 

~=GX(G~+$-P)+) (4’ =max{#, O>), (1.11) 

the appropriate variant of (1.5). The vortex core 52 = (Gw + $ > p} is, at least 
typically, a compactly contained subdomain of the fluid domain, and the solution 
given by (1.11) defines a steady flow whose velocities are continuous across the free- 
boundary, 32. 
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An important case not included in the above discussion occurs when the solution 
has the form o = &ya, where xn denotes the characteristic function for the set 
The appropriate constrained maximization problem in this case is 

PROBLEM Pi. Maximize E(o) subject to 0 Go < 2 in D, C(o) = 1. 
Now it is immediate that such a maximizer o = 0; is a steady solution of (1.4) 

since these constraints are invariant under the variations 6 used to derive (1.4). As 
is shown in [19] the variational conditions for Pi lead to the relation 

~=~XjGw+~-~ZO)~ (1.12) 

where p is the Lagrange multiplier as before; here it is assumed that A> l/meas( 
Problem Pi may be viewed as a limit of the problem P; with f(s) = d/r as Y -+ 1; the 
functional Qp, then represents a penalization of the functional E, which enforces the 
pointwise constraint w//z f 1 in D as r -+ 1. Indeed, we see that as r -+ 1 the 
solutions given by (1.11) tend to the solution given by (1.12), since Js(s)= 
(s+ )‘- ’ -+ Q~,~). In the literature, a steady flow of the form (1.12) is often referre 
to as a “vortex patch.” 

We now pose alternate versions of P; and Pi, in which the ambient flow (with 
streamfunction $) is not specified directly but rather is derived as the result of an 
additional constraint. These variants arise quite naturally in certain physical 
applications (see 1B). Let a (normalized) streamfunction y = ~(a-, y) be fixed with 
dy = 0 in D, and let the corresponding generalized linear impulse (or rn~rn~~t~rn) 
be defined by 

I(o) = j-ID VJ dx dy; (1.13) 

it may be assumed that 7 is specified (on 8D) so that q 2 0 on B. Let the objective 
functionals Qj. and E be defined as above except that now the terms involving $ are 
dropped. We consider the alternate problems having two linear constraints: 

PROBLEM P;. Maximize G).(o) subject to w 3 0 in D, C(a) = 1, I(w) = m. 

PROBLEM Pi. Maximize E(o) subject to O<a Bi in D, C(o) = 1, I(u)=m, 

where ;t and m are prescribed positive parameters, (The interpretation of and 
motivation for the impulse constraint is given below in the discussion of the specific 
examples.) The variational conditions satisfied by a maximizer w = w;.,, for P$ or 
Pi are, respectively, 

o=3LfS((Gco-q-p)+) (1.14) 

~=~"X{Go-cL.?-p>o} (1.15) 
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for Lagrange multipliers p and c corresponding to the constraints C(o) = 1 and 
I(o) =m, respectively. Clearly, these relations yield the effective ambient flow 
I,& = -cy, when compared with the analogous relations (1.11) and (1.12). 

The existence of a maximizer for each of the four problems stated above can be 
demonstrated quite easily using direct variational methods (see 1B for some referen- 
ces in special cases). Alternatively, the analysis of the iterative procedure given in 
Section 2 furnishes a constructive proof of existence of solutions. The variational 
conditions derived above as well as certain regularity properties of the solutions can 
also be established; this requires a penalization procedure for Pi and Pi, 

1B. Specljlic Flow Geometries 

We summarize here several important special cases of the general problems 
formulated above. Although these examples do not constitute an exhaustive list of 
the possible applications, they do s&lice to indicate the wide applicability of the 
variational method. 

Model Problem 

The simplest example concerns vortex flows in a bounded domain D c Iw* with 
tj = 0 in D (trivial ambient flow). The existence theory for P; is available in [6] 
(where the equivalent so-called plasma problem is studied), and the analogous 
theory for Pi is given in detail in [19]. The behavior of the solutions cc)>, as 
2 --f + co is readily treated using the particular formulation of Pi and Pi given here. 
Indeed, the main results in [19] address this question and establish, in particular, 
that wj” tends to a unit delta measure (a point vortex) located at an equilibrium 
point of the Kirchhoff-Routh Hamiltonian for the domain D (which is constructed 
from the Green function for D). 

Vortex Pair Problem 

This problem is actually posed on the half-plane ( y > 0}, but for our purposes 
(which concern numerical solutions) it is appropriate to consider the truncated 
version of the problem on a finite rectangle Da,b = ((x.1 <a, 0 < y < b}. A solution 
represents an opposite-signed, symmetric vortex pair translating with speed c in the 
x-direction. Thus, in the’ steady flow problem in D,, the ambient streamfunction 
tj = - cy defines a uniform flow ( - c, 0). In the alternate problems P; and Pi, it is 
natural to define q = y, and so the functional Z(o) = lj yo dx dy coincides with the 
x-component of the classical linear impulse (or momentum) (see [3]). The 
existence theory for Pi and Pi is carried out in this context in [20] (where 
a, b = + cc is also considered), and similar results for Pi and P; (1 < r < + CO) are 
easily obtained with the same methods. As 1 -+ + co, the solutions for P; and Pi 
tend to the point vortex pair at (x, v) = (0, t-m), as is shown in [20]. Further 
references concerning vortex ‘pairs include [ 16, 17, 241. 
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Fiippl Vortex Wake Problem 

This problem is a variant of the preceding one in which an obstacle B is now 
introduced into the (uniform) stream. We assume that b is bounded with smooth 
3b and is symmetrical about the x-axis; the fluid domain is therefore, Du,b = 
{ 1x1 < a, 0 < y < b}\D. The ambient flow is now the classical irrotational flow past 
fi with uniform velocity at co, say (-c, 0); thus, we define $ = -cg where 9 
satisfies 

Aq = 0 in Du,h, q=OonaD, fj = y on ao,,,\aB. (1.15) 
The interpretation of the impulse functional I(w) is not standard in the presence of 
both vorticity and an obstacle. In [20, Appendix] it is shown that the (x-corn- 
ponent of the) total linear impulse and the total energy are given by, respectively, 

z* = Z(0) + MC, E* = E(o) + #fc’, 

where M= jsD,,* IV(q - y)12 dx dy is the so-called induced mass of the obstacle 
Consequently, the functionals I and E may be interpreted as the vortex parts of the 
impulse and energy, while the terms MC and $Mc2 have standard interpretations in 
the classical theory of irrotational flows. (As is also demonstrated in [20, Appen- 
dix], the time derivative of I* for an evolving vortex flow in R2\S gives the 
acceleration reaction of the fluid on b.) These remarks serve to motivate, therefore, 
the introduction of the generalized impulse functional T(o) in our va~iati5~a~ 
characterization of steady flows. The existence theory and the asymptotic properties 
of soutions as L + + cx) are discussed in detail in [20} along the same lines as the 
preceding two examples. The classical case first considered by Foppl (see [15, Sec- 
tion 1551) concerns a (symmetric) point vortex pair (1” = + cc) in the wake of a 
circular cylinder (B is a disc); a steady flow is obtained when the point vortex is 
located at an equilibrium of the appropriate KirchhoB-Routh ~amiltonia~ (see 
PO1 1. 

Other Related Problems 

Of the numerous other possible flow geometries of physical interest that can be 
treated with the same general methods (although they are not necessarily special 
cases of the problems formulated in lA), here we shall mention just two. First, we 
note that (symmetric) vortex streets can be studied much like vortex pairs simply 
by imposing x-periodic boundary conditions. Such a problem is formulated and 
analyzed in [18], for instance. Second, we remark that corotating symmetric vortex 
pairs or, more generally, corotating systems of N vortices with N-fold symmetry can 
be studied. A complete variational analysis of this type of problem is available in 
[21]; other literature includes [9, 241. 

1C. Analogous Problems for Axisymmetric Flows 

We now extend the theory of two-dimensional flows outlined above to three- 
dimensional flows with axisymmetry. We consider an axisymmetric solution of the 
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Euler equations with velocity field u = u’(z, r, t)e, + z/(2, r, t)e, + u’(z, Y, t)e, and 
pressure p = p(z, r, t), where (z, Y, 0) denotes the usual cylindrical coordinate 
system and {e,, e,, e,j is the associated (orthonormal) coordinate frame. The 
vorticity field, o = m(z, r, t), is given by 

1 
w = coZez + de, f co6eg =; (ruB),ez - uzer + (24: - ~4:) e,. (1.17) 

As is shown in [5, 221, the governing dynamical equations are expressible as a 
system of evolution equations for the functions 

+06, y = ru! (1.18) 

It is convenient to introduce new spatial variables x=z, y= tr’ for the variable 
point (x, JI) in the cross-section D of the given axisymmetric fluid domain. The 
Stokes streamfunction tj = G[, G denoting the Green operator as before, is now 
defined by solving the elliptic boundary value problem, 

LIG, = c in D, @=OondD, 

where 

,=-L’-a2 
2y ax2 ay2' (1.19) 

The equations governing [ and y are found to be (after some calculations given in 
WI) 

[ +a(i,GI+~)+a(Y/2y,Y)=0 
r 

a(4 Y) 0, Y) 

Yt+ 
ah GI: + $I= o 

ah Y) 

in D x (0, T), 

(1.20) 

where $ = $(x, y) is the streamfunction for the ambient irrotational flow, L$ = 0. 
These equations are then the point of departure for our discussion of steady 
axisymmetric vortex flows. 

Vortex Rings without Swirl 

When y is taken to be identically zero, the system (1.20) reduces to a single 
equation for [ which has precisely the same form as the two-dimensional vortex 
dynamics equation (1.2), except that G is the Green operator for L rather than for 
-d. The corresponding theory for steady solutions therefore applies with essen- 
tially no changes. This theory is developed in [6] for the model problem in a 
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domain, and in [14] for the case of steadily translating vortex rings (the analog of 
the vortex pair problem); the existence of solutions ii and their asymptotic 
behavior as /z + + cc are therefore known. One novelty encountered in this case but 
not in the two-dimensional case is the result that in problems P; and Pi the trans- 
lational speed ci, -+ + co as I -+ + co. This makes the formulation of P; and Pi 
much preferable to that of P; and Pi, at least as far as the analysis of properties of 
the solutions is concerned. Other approaches to the vortex ring problem are taken 
in [13,7]. 

Vortex Rings with Swirl 

A new class of steady solutions of (1.20) for which both c > 0 and y > 0 in a sub- 
domain 52 c D is introduced in the recent work [22]. It is shown therein that there 
exist solutions in the model case, for instance, having the form (analogous to 
(1.11)) 

i=jLfs(.Y, ((VP)+)> y=A1’2b-1((C[-,u)f) (1.21) 

if the dependence f( y, s) is delined by 

f(.Y, s)= Cb-‘(s)12/4y-a(b~‘(s)) (s 3 01, 

where a and b are specified functions; these latter functions have physical inter- 
pretations as densities for the angular impulse (or momentum) and helicity 
integrals, respectively, as is stressed in [22]. The function ff y, s) is required to 
satisfy certain structure conditions similar to those in (1.6) but we will not give 
them here; the so-called Beltrami case occurs when a = 0 and b(t) = t, so that 
f( y, s) = (s+)~/~Y, and the general conditions are fashioned on this special case. 
The constrained maximization problems analogous to P; and P; that pertain to 
these solutions are formulated by eliminating y (algebraically) from the steady 
equations for the governing system (1.20); we refer the reader to [22] for t 
discussion. 

2. ITERATIVE PROCEDURES 

In this section we define and analyze the iterative procedures which are designed 
to solve the variational problems formulated in Section 1. We generate these 
procedures by using a general construction due to Eydeland [lo] termed “transfor- 
mation of the objective functional.” Iterative procedures of this kind, which can be 
regarded as nonlinear analogs to the “power .method” for linear eigenvalue 
problems, have the virtue that their convergence properties can be analyzed even 
when the given problem does not have a unique solution (and the set of solutions is 
quite complicated, in principle). In Theorem 2.3, we prove that each version of our 
procedure converges in a generalized sense independently of its initialization. In 
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Theorem 2.4; we show that in most cases the procedure behaves as if the solution 
were unique; we note that this result is supported further by our observations of the 
implemented computations. 

2A. Analysis in the Case of One Linear Constraint 

We now investigate iterative procedures for solving problems P; and Pi 
formulated in Section 1. We let K, denote the class of functions 

K,= u,~L”(D):O<odd,C(w)=jj wdxdy=l , 
D 

(2.1) 

where (meas(D) < 16 + cc and l/r + l/r’ = 1. We recall from the definition of 
these constrained maximization problems that P; is posed on K, while Pi is posed 
on Kj. (A< +CO) with r’= co. 

We introduce two versions of the iterative procedure corresponding to the two 
problems P; and Pi. They are defined in an explicit form as follows. 

Procedure I7;. Given an arbitrary o” E K,, let 

w’=~~~((Go’-‘+~-~~)+)EK, (j= 1, 2, . ..). (2.2) 

where ,U~E 08 is chosen so that C(oi) = 1. 

Procedure III:. Given an arbitrary w” E K,, let 

where $E R is chosen so that C(oj) = 1. 

In both versions the construction of the pair (oj, $) from wi-’ can be viewed as 
a two step process: first, determine *‘- ’ = Go’- ’ by solving - A$‘- ’ = ojp ‘in D 
with 11/j-’ = 0 on 8D; and, second, find $ (and hence oi) according to (2.2) or 
(2.3) so that the constraint C(oj) = 1, a nonlinear equation in the parameter pj, is 
satisfied. 

For the purposes of analysis it is useful to note the variational form of the above 
procedures. Procedure Il; can be represented as 

0.9 = arg max .Ts [c5(GoP1 + I$) - ;If*(cG/;l)] dx dy, 
GEK, D 

while procedure I7: can be represented as 

cd = arg max ss c5(Go’- l+ I,?) dx dy; 
&,rK;. D 

(2.4) 

(2.5) 
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and, for both versions, p”’ is the corresponding Lagrange multiplier. The derivations 
of the variational conditions (2.2) and (2.3) for the problems (2.4) and (2.5), respec- 
tively, follow just as in Section 1 where problems P’; and Pi are considered; 
consequently, we omit them here. 

The crucial variational property of this iterative procedure is the monotonic&y 
lemma proved next. In the sequel we use the notation I/. /lG to denote the G-norm 
(which is the energy norm) 

jVGol* dx dy k24 

where G is the Green operator. 

LEMMA 2.1, (i) The sequence 09 E K, defined by procedure n; satisfies 

$ IId- 0 j~l~~~~~i,(oj)-~j.(oj~l) for j=l,2, . . . . (2.7) 

(ii) The sequence coj~ K;. defined by procedure II: satisfies 

$ jloj-oj~lI/~dE(wj)-~(oj-l) for j= 1, 2, . . . . b2.s) 

ProoJ (i) It follows directly from the definition of the objective functional 
that 

gj;.(&) - @j.(o.j- l) = i jlo.i-wj-l 11; 

+ jjD [~+(Goj-~ + $) - Af*(o’/A)] dx dy 

- 
ss 

[co- ‘(Go+’ + I)) - /if *(aP “/A)] dx dy 
D 

>~IIoko-l~~;, (2.9) 

where the inequality holds by virtue of definition (2.4). 
(ii) It follows as in (i) above that 

E(wj)-E(oj~l)=~Iloj-oj-l 2 Ilc+ jjD toj- co- ‘)(Gw’-” + 11;) dx dy? 

~&oko-‘lj~, (2.10) 

now using definition (2.5). 
On the basis of Lemma 2.1 we conclude that (i) the sequence QA(w,‘) for n; and 

(ii) the sequence E(oj) for fit are nondecreasing as j + + co. That these sequences 
are bounded above is easily demonstrated as follows. 
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(i) We have, using elementary properties of the Green function, the estimate 
sup, Gw 6 gi 11011 Lr’, where the constant %i depends upon r and D. Therefore, we 
find that for all w E K, there holds 

~~(0) = sf [+w(Gw + 6) - ;If*(w/l)] dx dy 
D 

using estimates for f*(o) implied by the hypotheses (1.6). Clearly, inequality (2.11) 
implies that Qi. is bounded above on K, when A < + cc and 1~ r < + 03. 

(ii) We have (as in (i)) the estimate sup Go < %a I(wIIL~, where the constant 
%‘d depends upon D. Therefore, we find easily that for all w E KA there holds 

E(w) d g,n. (2.12) 

(Sharper estimates than (2.11) and (2.12) can be given, but they are not needed in 
the present analysis.) 

We now conclude that 

@).(W’) t @f < + co, E(w’)fE*< +cc as j++co, (2.13) 

and hence, by (2.7) and (2.8), that 

Ilwj-wj-qG+O as j-++co, (2.14) 

for both iterative procedures n; and ni. 

Let 0; denote the set of extremals for the constrained maximization problem P; 
in K,, and let 9: denote the corresponding set for Pi. In other words, w E Q; (resp. 
Qi) if and only if w E K, (resp. KJ and w satisfies the variational equation (1.11) 
(resp. (1.12)). The following lemma constitutes a constructive proof of the existence 
of these extremals. 

LEMMA 2.2. (i) Q’; # 0. (ii) 0: #@. 

Proof of (i). By virtue of (2.11) and (2.13), we have the bound 
II wi I/ L,’ < N, < + cc for the sequence of iterates wj, j= 0, 1,2, . . . . where No depends 
upon r, D, A, and w”. Consequently, we can choose a subsequence wik such that 

wjk-+ w* and @jkP1 ,a** weakly in L”. (2.15) 

Using standard properties of the Green operator, we know that 

Gwjk -+ Go* and strongly in L’. (2.16) 
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The statements (2.15) and (2.16) together with (2.14) imply that w* = a**, since 
I/w* --o** llG=limk,, lIc~j~-&-~ IIG=O. Now we claim that 

o*=argmax ss [$Go* + $) - lf*(6,lJv)] dx dy. 
CitK, D 

To prove this we recall definition (2.4), which implies that for any 6 E K,, 

is [B(Go* + I,&) - lvf*(cZ/A)] dx dy 
D 

[15(Gd-’ + II;) - /zf*(&/,i)] dx dy 

[c~‘~(Gd-~ + $) - Af*(o’“/~)] dx dy 

6 .I [w*(Go* + 1+6) - Jwf*(o*/l)] dx dy, 
D 

(2.17) 

(2.18) 

where we also use the convexity of f*(o) in the last inequality. Since clearly 
co* E K,, we obtain (2.17) as claimed. The variational conditions for (2.17), 

o*=Aj-s((Go*+$-p*)+) in II (2.99) 

with a Lagrange multiplier p* E R, follow using the standard argument as sket 
in Section 1. (The constant p* is uniquely determined by the extremal w*.) 
proves assertion (i). 

Proof of (ii). This proof is analogous to that of (i). Indeed, arguing as before, 
we now conclude that there is a subsequence ojk such that 

wjk,gjk-l+co* weakly star in L”, 

co* = arg max SI cZ(Gco* + $) dx dy. 
Li, E K,. 

(2.21) 

The variational conditions for (2.21), 

~*=~X{Gw*+pLp*>O} in D, (2.22) 

follow again as sketched in Section 1. This proves assertion (ii). 

The above proof of Lemma 2.2 also establishes that every subsequence of iterates 
oik has a further subsequence w ji which converges in the G-norm to an extremal 
o*; this holds both for n; and II:. Consequently, if we let dist,(w, Q)== 
inf,., I{ o - O/I denote the G-norm distance to a set a, then we obtain the following 
theorem which is our generalized convergence result. 
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THEOREM 2.3. (i) For procedure n; defined by (2.2), we have 

dist,(oj, Q;) -+ 0 as j++co. (2.23) 

(ii) For procedure I7: defined by (2.3), we have 

dist,(oj, 52:) -+ 0 as j-++co. (2.24) 

ProoJ: The proofs of (i) and (ii) are now immediate. Arguing by contradiction, 
we see that it is impossible that dist,(@, 9;) > 6 > 0 for any subsequence ojk of oj 
(ldr<+co). 

We cannot conclude from Theorem 2.3 that the sequence 01 is convergent (or 
Cauchy) in the G-norm when !S; (16 r < + co) consists of more than one extremal. 
In the next theorem, however, we establish an alternative which ensures that this 
lack of convergence must be quite exceptional. Let A’; (16 r < + CC) be the set of 
G-norm limit points of the iterative sequence wi for a given initialization o”, (Of 
course, A; E 0; by Lemma 2.2.) We characterize the convergence properties of the 
procedures n; (1 < r < + co) in terms of the nature of the sets A;. 

THEOREM 2.4. For both (i) 1 <r < + CC and (ii) r = 1, we have the alternative: 
either A; consists of a single extremal, or A; contains infinitely many extremals none 
of which is isolated (in the G-norm). 

ProoJ: We use the proof suggested in [ 111. We claim that if A; contains one 
isolated extremal o*, then the (entire) sequence oi converges to o* as j + + co. To 
prove this, we take disjoint neighborhoods N, and N, of w* and A; \(o*}, respec- 
tively, with 6 = dist,(N,, NJ > 0. By the reasoning used in Theorem 2.3, 
oj~ N, u N, for all sufficiently large j. But, by (2.14), I(&- & ’ 11 G < 6/2 for all 
sufficiently large j. Consequently, as co* E A;, there is a j, such that c.9~ N1 for all 
j> j,, and the claim follows. The stated alternative is now evident, and so the 
theorem is proved. 

We remark that stronger versions of Theorems 2.3 and 2.4 can be proved in 
which the G-norm is replaced by (i) the L”-norm when 1 <r < + CO, or (ii) the 
LY-norm for any q < + cc when r = 1. These extensions of the convergence results 
can be demonstrated by using a standard bootstrap argument. 

Finally, we remark on the determination of ,uj in (2.4) and (2.5). We note that if 

(i) o(~):=~~~((Goj-‘+~-~)+) or 

(ii) w(P) :=~xj~~~-~+~-~>~~ 

then the circulation C(W(,U)) is a monotonic function of p, and thus ,U =pj, 
satisfying C(o(#)) = 1, can be found by a simple method such as a binary search 
procedure. Below in 2B we consider a general approach to finding these constants. 
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2B. Analysis in the Case of Two Linear Constraints 

The following two versions of the iterative procedure for the two problems 
and Pi are obvious analogs to those studied in the preceding subsection. 

Procedure n;. Given an arbitrary o” E K, with Z((o’) = m, let 

oi=~f,((Gw'~'-c'r-~j)+)~K, (j= 1, 2, . ..). 

where ci7 $E 08 are chosen so that Z(oj) = m, C(o’) = 1. 

Procedure II:. Given an arbitrary o” E K, with Z(o”) = m, let 

where ci, ,LL~E R are chosen so that Z(oj) = m, C((ipj) = 1. 

As is entirely evident, we can prove the same results concerning the convergence 
properties of Pz and ZZ: as we have proved in subsection 2A for ZZl, and ZZ: . We will 
not state the corresponding theorems here. (In fact, these results are valid even for 
any number of linear constraints.) 

The only difference between the procedures ZZ; and ZZ; (1~ r < + co ) stems from 
the fact that the latter requires the determination of two constants 13, ,~j at eat 
iterationj. Consequently, unlike the former case, we cannot use a simple binary 
search procedure to compute these constants. We now propose a general method 
for finding the pair cj, ,~j in (2.24) and (2.25). (This method also applies to any 
number of linear constraints.) 

We consider first the procedure F1. It is clear that cj, ,I.L~ are the solutions of the 
following system of nonlinear equations with respect to the variables c, p: 

0 lLfs((Goj-‘-cq-p)+)dxdy=l 
D 

0” 
r$fJ(Gwj-‘-q-p)+)dxdy=m. 

D 

(2.26) 

But this system can be written in the equivalent form VR,‘(c, ,u) = 0, where 

R'(c, p)=g l.f((Go'-' -cq-p)+)dxdy+mc+p. (2.27 j 

The function Rj(c, p) is convex by hypothesis (1.6). Thus, the determination of 
cj, $ is reduced to the minimization of Rj(c, ,u), which can be accomplishe 
standard method such as the steepest descent method. 

We consider second the procedure ZZ:, for which the problem of finding cJ, $ is 
completely analogous. Now it is necessary to minimize: the convex function 

R'(c, p)= jj" l~(Gw~'~'-u-p)+ dxdy+mc+p. (2.28) 
D 
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3. NUMERICAL IMPLEMENTATION 

We begin this section with a description of the discretization of the iterative 
procedures defined in Section 2. We then present some numerical results for two 
special problems chosen to illustrate the general method. 

3A. Discretized Iterative Procedures 

In the numerical implementation of the procedures Fi and l7; (16 r < + cc ) we 
use a finite-element method. We note, however, that other methods are possible and 
that the choice of a particular discretization is important only as far as the solver 
for the linear elliptic problem (3.1) is concerned. We shall discuss the discrete 
version of 4 (1 < r < + co) only, since the corresponding discussions of the other 
procedures are similar. 

We let Fk be a triangulation of the (polygonal) domain D where h = 
max TE Fb diam( T), T denoting any triangle in the triangulation &. (Throughout this 
discussion, h will be used to indicate a relation to the discrete implementation.) We 
use a conforming finite-element method, and thus we choose a finite dimensional 
space Vh of piecewise Lagrange polynomials (for instance, piecewise linear 
functions) associated with the triangulation & such that V, c H’(D) n Co(D) and 
vh ) aD = 0 for every v,, E V,. We let rch denote the projection of H;(D) onto Vh, so 
that rchv is the V,-interpolant of the function v E H;(D). The discretized Green 
operator G,, : L2(D) -+ V, is defined in this context as follows: $,, = G,w is the linite- 
element solution of the problem (1.1) or, more precisely, of the problem 

(3-l) 

We also write $,, = rc,,$ throughout this discussion. With these notations we can 
now define the finite-element version of the iterative procedure &. 

Procedure nl;,, . 
JJD co: dx dy = 1, let 

Given an arbitrary CD: E V, satisfying OX > 0 and 

0~=~71hfs((Gh~X-‘+~h-~~)+) (j = 1, 2, . ..). (3.2) 

where ,u{ E R is chosen so that jjD oi dx dy = 1. 

We note that pi is uniquely determined (by ox-‘) since the expression 

is clearly a monotonic function of ph. 
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As in Section 2, we also have a variational characterization of the proce 
n;.hI 

WX = arg max 
+z E K,,h ss [c.~~(G~co-~ + $,) - hchf*(&,/A)] dx dy, (3-J) 

D 

where Kco,h = (ciQVh:5&0, jf&i&dxdy=l). 
Tn order to prove that (3.2) follows from (3.3) we observe that oh E V, is uniquely 

determined by its values at the interpolation nodes (a,, b,), n = 1, . . . . IV, for Yhh, and 
that 

ss Gh dx dy = $ ct,Qh(an, b,), 
D n = I 

replacing the integrals with quadrature formulas and using the obvious equality 
rc/, f*(Z~~(a,, 6,)/A) =f*(Gh(an, b,)/A). Then the variational conditions (3.2) for the 
finite-dimensional constrained maximization problem (3.3) follows as in Section 2. 
Now, moreover, we may proceed as in Section 2 to prove that 

dist.,(wi, Q;,,) -+ 0 as j-)+00, (3.4) 

where Q2;,h c Vi7 is the set of solutions of 

wh = Anh fs((Gt#t, + $h - &) + ) with 
!J ohdxdy= 1. (3.5) 

D 

Finally, we complete this discussion by establishing that 

SUP diSt,(W,, a;) -+ 0 as h “0, (3.6) 
w E .qh 

where Q; denotes the set of solutions of problem Pi. Indeed, if on the contrary 
there exists a sequence oh, such that h, -+ 0 and dist,(w,,, Q;) 2 6 > 0 as m + ax), 
then, arguing as in Lemmas 2.2 and 2.3, there exists a further subsequence (denote 
again by oh,) such that oh, -+ o* in the G-norm. Since the multipliers ph are 
bounded for all h (as is easily demonstrated), we may assume that Pi, -+ FL* E R, 
taking a subsequence if necessary. Now, we pass to the limit in (3.5) using the 
standard estimate from finite-element theory, I/ 1 - rrh l/H1 = O(h) for regular families 
of triangulation [8], and the fact that Gh,Oh, -+ Go* as m + co, and we obtain 
that 

o*=2,fs((Gw*+$-p*)+) with /ID co* dx dy= 1. 

Thus, o* E Q; and so we have the required contradiction. 

581/78/l-14 
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Procedure Z7:,, (r = 1) is defined in the same way as above except that the 
iterates oj belong to the finite-dimensional space of piecewise constant functions 
associated with the triangulation Yh. The corresponding procedures I7;,, 
(1 < Y < -t- co) with two linear constraints are entirely analogous. 

3B. Computational Examples 

We consider first the constrained impulse version, P;, of the symmetric vortex 
pair problem formulated in Section 1B. For these flows the fluid domain is taken to 
be D = { - 1 <x < 1, 0 < y < l}, and the constraints C(w) = 1, I(w) = 0.25 are 
prescribed. In Fig. 1, we present the streamline patterns for these steadily trans- 
lating vortex pairs with A = 20 and f(s) = (s+)‘/ r, where we take successively the 
values (a) r = 1, (b) r = 1.25, (c) r = 1.5; we indicate the free-boundary as a solid 
curve, and all other streamlines as dashed curves. The computed values of the con- 
stants c and p associated with the solution in each case are: (a) c = 0.27, p = 0.12; 
(b) c =0.24, y =0.07; (c) c=O.23, p= 0.02. In qualitative terms, the displayed 
solutions illustrate the dependence of the size and shape of a steady vortex (with 
fixed circulation and impulse) upon the distribution of vorticity within its core. 
Indeed, the vortex core broadens considerably as the exponent r is increased, and 
hence as the vorticity-streamfunction relation o = A[ ($ - cy - 11) + ] r- 1 is changed; 

FIGURE 1 



SOLVING FREE-BOUNDARY PROBLEMS 213 

in the nearly extreme case (c), the free-boundary almost coincides with t 
separating streamline $ - cy = 0. These phenomena are associated with the decrease 
of ,U to zero. The translation speed c, on the other hand, changes only slightly over 
this range of Y values. 

We consider second the constrained impulse version, Pi, of the Foppl-type 
vortex wake problem also discussed in Section 1B. Now the domain is taken to 
D = ( - 1.25 < x < 0.75, 0 < y < 1, Jm > 0.25), and the constraints C’(w) = 1, 
I(w) = m are prescribed in the three cases: (a) m = 0.1; (b) m = 0.2; (c) m = 0.3. In 
Fig. 2, we give the streamline patterns for these vertical wakes behind a circular 
cylinder with f(s) = s+ where again A= 20. The computed values of the constants c 
and JJ are: (a) c = 0.73, ,D = 0.02; (b) c = 0.37, ,~4 = 0.09; (c) c = 0.14, p = 0.18. As is 
expected on the basis of the classical point vortex model due to Fbppl [ IS,2 
vortex (core) moves away from the obstacle (the cylinder) as the impulse dye is 
increased; in this process, c decreases and p increases. (We note that in case (c) the 
vortex is already far enough away from the obstacle that the flow is rneas~ra~l~ 
affecteld by our domain truncation, and so it would be expected to depart from the 
actual flow in the exterior of the obstacle.) We remark that the constrained impulse 
version of the numerical method is especially convenient in this context because it 
avoids the ad hoc adjustments which are necessary to obtain the desired wake if the 
value of the speed c is prescribed instead. 

FIGURE 2 
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In all of the computations discussed above, the discrete grid consisted of 3321 
nodes with h = 0.025. The iterative procedure l7!!,, was terminated at iteration j 
when 

With this stopping criterion, between 20 and 30 iterations were required to compute 
the displayed solutions. A linear rate of convergence was consistently exhibited by 
these computations over the range of prescribed parameters and initializations. This 
supports the practicality of the general method discussed in Section 2, and further- 
more indicates that the possible anomalies in the solution sets treated in Section 2 
are indeed quite rare. 
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